
1

Object Oriented Design Heuristics
Dennis Mancl

dmancl@acm.org

MSWX MSWX ◊ Mancl ◊

Software ◊ Experts ◊ http://manclswx.com

This work is licensed under a
Creative Commons Attribution 4.0

International License

Why Heuristics?

• All software developers know
how to code, but they are
not all equally skilled in
creating good designs for
applications or subsystems

• We all get training in
programming languages,
development tools,
algorithms, data structures,
and database tools

• But most of us have never
had a formal course in design
– we learn “on the job”

slide 2

http://creativecommons.org/licenses/by/4.0/

2

Why Heuristics?

• Design principles: good but complicated…

• Modularization – divide a big design into small independent pieces

• Encapsulation – each component has a simple interface, hiding
complex details

• Low coupling – minimize dependencies between components

• Extensibility – components can be extended without changing the
base code

• Design heuristics: easier to learn and apply
• Simple “rules of thumb”

• They help avoid design pitfalls

• Use them in design brainstorming and design reviews

slide 3

Heuristics for Object Oriented Design

• We will talk about “object oriented design heuristics” today:
• We want to define good classes (classes should encapsulate the

right data and should have the right public interfaces)

• A good distribution of responsibilities across a group of classes

• Not too much “concentration of behavior” in one class

• Many of our classes will “delegate” part of their work to other
classes

• Use inheritance / subtypes in a sensible way

• Avoid major pitfalls in the use of inheritance

slide 4

3

Design Heuristics can help

• Designers have to avoid many pitfalls
• building an “action-oriented” system instead of an object oriented

system

• creating god classes (too much concentration of data or operations)

• underuse of containment relationships

• inappropriate use of inheritance to model containment, common
interface, and single objects

• We will talk more about:
• Action oriented: centralized control, single main procedure,

uncontrolled data sharing

• God class: one class controls everything, lots of complexity
concentrated in one place

slide 5

Arthur Riel’s Object Oriented Design Heuristics

• One set of heuristics is contained in the book:

Object-Oriented Design Heuristics
by Arthur Riel

• This book lists 61 heuristics
• these are “rules of thumb”

• they are sometimes violated in designs that are considered good

• but the heuristics help identify places where the design should be
changed

slide 6

4

Notation for design

• Notation

• design will create some artifacts – and we want to everyone to be able to
read them

• a common set of notations is the Unified Modeling Language (UML),
defined by Rational Software Inc. and adopted by the Object Management
Group and many CASE tool vendors

:Microwave Oven myTimer:

Timer

myPowerTube:

PowerTube

add time(60)
turn on

start
counting

turn off

count
reaches
zero

cook 1 min button

pushed

class diagram sequence diagram

Timer
number of seconds

of cook time

remaining

add time

start counting

count reaches zero

1

1

Microwave Oven

cook button pushed

PowerTube
power level

turn on

turn off

1

1

ButtonPanel
cook 1 min button

cook 15 sec button

popcorn button

cancel cooking button

sense button press

1

1

slide 7

Categories of heuristics

• Arthur Riel’s heuristics are organized into several categories:
1. Classes and objects: the basic structure of the building blocks of OO

architecture

2. Object oriented “topology” (versus action-oriented topology):
creating decentralized architectures

3. Designing the pattern of collaborations within a system of objects

4. The inheritance relationship: creating variations or extensions of an
existing class

5. Miscellaneous heuristics: multiple inheritance, associations, use of
class data and operations, and physical design considerations

slide 8

5

Some important heuristics

• Arthur Riel’s heuristic covers some important object
oriented basics:
• H2.1: All data should be hidden within its class.

• H2.3: Minimize the number of messages in the protocol of a class.

• H2.6: Don’t clutter the public interface of a class with things that
the user of a class can’t use, shouldn’t use, or probably won’t be
interested in using.

• H2.8: A class should capture one and only one key abstraction.

• These heuristics are the basis of many “coding standards”
documents
• In C++ and Java, most software developers make all data attributes

“private” so they can only be accessed and modified by operations
within the class.

• Classes need to have simple and clean documentation.

• Classes should avoid mixing together multiple abstractions.

slide 9

Encapsulation

• H2.1: All data should be hidden within its class.

class Point {

private:

int x_coordinate;

int y_coordinate;

public:

void setposition(int x, int y) {

x_coordinate = x; y_coordinate = y;

}

void moveposition(int delta_x, int delta_y) {

x_coordinate += delta_x; y_coordinate = delta_y;

}

int getx() const {

return (x_coordinate);

}

int gety() const {

return (y_coordinate);

}

};

Data is “hidden” as private data
attributes – we don’t want the
data to be public

In the public section of the class,
we have “accessor” and “modifier”
functions to be used by others

Encapsulation == we must use the

public interface to read and write

data
slide 10

6

Keep the public interface clean

• H2.6: Don’t clutter the public interface of a class with things that the
user of a class can’t use, shouldn’t use, or probably won’t be interested
in using.

class Course {

private:

std::string course_number;

std::string course_title;

std::string course_description;

std::vector<CourseOffering*> course_offerings;

public:

Course(std::string cnum, std::string ctitle, std::string cdesc);

void add_offering(CourseOffering *coffering);

private:

CourseOffering *find_position_to_insert(CourseOffering *coffering);

};

Course
course_number

course_title

course_description

add_offering

cancel_offering

*1 CourseOffering
offering_date

offering_time

offering_location

offering_instructor

register_student

print_roster

This private function is a helper function – it
will search for the position to insert the new
CourseOffering object into the list.

It would be a mistake to make it a “public”
function, because external users of the
Course class should never need to call it…

Maintain a
“sorted” list of
all offerings for
this course

void Course::add_offering(CourseOffering *c) {

Course *insert_pos =

find_position_to_insert(c);

if (position_to_insert != 0) {

course_offerings.insert(insert_pos, c);

}

}

slide 11

Action oriented program

• What is an “action-oriented” program?
• the application has centralized control - there is a single main

procedure that is “in command” of the control flow

• the application’s data may be shared between many different
procedures

• Action-oriented programs don’t always evolve gracefully...
• watch for “accidental complexity”

• accidental complexity == complexity that is due to the structure of
the implementation rather than the structure of the problem

• when we add new functionality to an already-designed system, we
often create accidental complexity

slide 12

7

Action oriented program

• Main program controls everything

/* Main program – it gives orders to all of the function */

int main(int argc, char **argv) {

initialize_data_structures();

open_main_database();

connect_to_external_system_1();

connect_to_external_system_2();

connect_to_external_system_3();

verify_connections();

while (forever) {

display_user_interface_screen();

req = receive_user_request();

update_database(req);

send_message_to_external_system(req);

}

};

If any new internal structures are
needed, or if we need to connect to
a new external system, we must
update the main program.

Every critical event must pass
through the main program.

Lower-level functions may update
global data structures and the
database – with no constraints.

Big maintenance
headaches…

slide 13

Object oriented software

• Object oriented software design says: “define classes”
• the design attempts to group together each important data structure and

the operations that manipulate it into a single class

• but: just because a design is “object-oriented” (the design is composed
completely of classes) doesn’t mean that it is automatically “good”

• an application might be superficially object-oriented, while still having the
structural problems of an action-oriented application

Connect extern 1

open_connection

1

1

Main system object

initialize

connect

verify connections

process requests

Connect extern 2

open_connection

1

1

System database

open_db

close_db

1 1

User screen

display

get request

1 1

Not a good design!

slide 14

8

Two design problems

• the “god class” problem
• one class controls everything

• the “proliferation of classes” problem
• the functionality is spread out over too many small classes

slide 15

Some heuristics

These heuristics are from Chapter 3 of Riel’s book:

• H3.1: Distribute system intelligence horizontally as
uniformly as possible.

• H3.2: Do not create god classes/objects in your system.

• H3.3: Beware of classes that have many accessor methods
defined in their public interface. Having many accessor
methods implies that related data and behavior are not
being kept in one place.

• H3.4: Beware of classes that have too much
noncommunicating behavior (operations that operate on a
proper subset of the data members of a class).

slide 16

9

Central control versus object design

• These four heuristics might be violated when a designer:
• has a centrally-controlled architecture in mind at the beginning of

the design process, and

• tries to maintain that centrally-controlled structure during the
initial design of the main classes in the system.

• The designer is still thinking in the action-oriented
paradigm, but is trying to recast the design in object-
oriented terminology (without really making the transition
to an object oriented architecture).

slide 17

Example

• Arthur Riel’s home heating system example (an
object oriented design with poor distribution
of behavior):
• The system has two main physical classes: Room

and Furnace
• Room has three important attributes:

• the current temperature in the room (ActualTemp)

• the thermostat setting for the room (DesiredTemp)

• whether the room is currently occupied (Occupancy)

• Furnace can be turned on and off.

• We introduce a new class called
HeatFlowRegulator:
• HeatFlowRegulator mediates between the Room and the

Furnace.

• It calls on the services of the Room class: it peeks at the
values of DesiredTemp, ActualTemp, and Occupancy,
performs some computation, and invokes the appropriate
operations on the Furnace.

Room
DesiredTemp : double

ActualTemp : double

Occupancy : bool

Furnace

turn on

turn off

slide 18

10

Example (continued)

• Initial (“god class”) version of the home heating system

Room
DesiredTemp

ActualTemp

Occupancy

get_desiredTemp

set_desiredTemp

get_actualTemp

get_occupancy

Furnace

turn on

turn off

HeatFlow

Regulator

control room

temperature

<<uses>>
<<uses>>

slide 19

Questions about the example

• Is this system “object-oriented”?
• Sure, because we have put all of the data and control into classes.

• Are there problems with this design?
• Yes. The HeatFlowRegulator is a “god class”. It is the “omnipotent

controller” that pulls in all of the information needed to make a
decision, and then calls all of the operations that affect the physical
objects.

• Is there a better way?
• Eliminate the “god class” by making the Room smarter.

We are going to change the
“distribution of responsibilities”

The Room class will be “smarter”

slide 20

11

Questions about the example

• Improved version of home heating system
• Let the Room do the computation to determine whether it needs

heat.

• This makes the HeatFlowRegulator class much simpler, since it only
needs to call the Room::do_I_need_heat?() function (instead of all
of the other accessor functions), so it doesn’t depend so much on
the structure of the information in Room.

Room
DesiredTemp

ActualTemp

Occupancy

do_I_ need_heat?

Furnace

turn on

turn off

HeatFlow

Regulator

control room

temperature

<<uses>>
<<uses>>

Is this a better design?
What do you think?

slide 21

Distribution of functionality

• The home heating system is a great illustration of Heuristic
H3.1:
• H3.1: Distribute system intelligence horizontally as uniformly as

possible. This means that the top-level classes in a design should
try to share their work uniformly.

• Of course, a system may be designed to use a collection of
dumb lower-level classes
• classes that provide specialized services such as hardware

interfaces, formatting of data, database access, and so on

• But in most good object oriented systems, the designers can
point to several classes in the design that are “peers”, and
there ought to be a good distribution of intelligence among
these classes

Is the Room class a fundamental part of the home
heating system design? Or should it be a “dumb
lower-level class”? What do you think?

slide 22

12

What is a god class?

• A “god class” indicates that there is a poor distribution of
responsibility:
• H3.2: no “god classes”

• How can you tell if you have a god class? If a system has N classes, and
you ask each developer which N-1 classes he or she would be willing to
write, and if everyone avoids the same class - that’s a hint that you
have a god class.

Is a god class good or bad?

Good for building the initial design quickly?

Bad for long-term maintenance? Difficult to implement
clean modifications and extensions?

What do you think?

slide 23

Heuristics to detect god classes

• Two more warning signs that you might have a god class:
• H3.3: too many get and set operations

• If you are writing a class A that calls several get and set functions in
another class B, you might ask the question: “What am I doing with the
information that I am getting from class B, and why doesn’t class B do
it for me?”

• H3.4: too much noncommunicating behavior

• This is a sign of poor cohesion (the list of operations is not well-
thought-out). You may have combined two or more classes into one.

In the first design, why did HeatFlowRegulator have to
call three “get” functions? Room can do the calculations
instead – this makes the HeatFlowRegulator simpler.

Definition of “noncommunicating behavior” is on the next
page…

slide 24

13

Noncommunicating behavior

• Problem: a small subset of the public member functions of the class are
implemented only in terms of a small subset of the data attributes

class CustomerOrder {

private:

std::string customer_name;

std::string customer_billing_address;

std::string customer_shipping_address;

Money order_cost;

std::vector<std::string> order_item_names;

std::vector<Money> order_item_costs;

public:

void set_customer_info(std::string name,

std::string addr1, std::string addr2);

void print_mailing_label() const;

void add_new_item(std::string item_name, Money item_cost);

void clear_all_items();

Money get_cost() const;

};

A CustomerOrder record is
an object that contains all of
the information needed to
prepare an order for
shipment to a customer

slide 25

Noncommunicating behavior

• Problem: a small subset of the public member functions of the class are
implemented only in terms of a small subset of the data attributes

class CustomerOrder {

private:

std::string customer_name;

std::string customer_billing_address;

std::string customer_shipping_address;

Money order_cost;

std::vector<std::string> order_item_names;

std::vector<Money> order_item_costs;

public:

void set_customer_info(std::string name,

std::string addr1, std::string addr2);

void print_mailing_label() const;

….

};

set_customer_info()

print_mailing_label()

Note: these two functions only act on the
“customer” information, not the “item” or “cost”
information

slide 26

14

Noncommunicating behavior

• Problem: a small subset of the public member functions of the class are
implemented only in terms of a small subset of the data attributes

class CustomerOrder {

private:

std::string customer_name;

std::string customer_billing_address;

std::string customer_shipping_address;

Money order_cost;

std::vector<std::string> order_item_names;

std::vector<Money> order_item_costs;

public:

….

void add_new_item(std::string item_name, Money item_cost);

void clear_all_items();

Money get_cost() const;

};

Note: these three functions only act on the
“item” and “cost” information

add_new_item()

clear_all_items()

get_cost()

slide 27

How to fix non-communicating behavior:
make smaller classes
• A Solution: The design can be

improved by creating two new
classes:

• The new CustomerOrder class
will now contain a Customer (by
reference) and Items (by value):

class CustomerOrder {

private:

Customer *cust;

std::vector<Item> items;

Money order_cost;

public:

CustomerOrder(Customer *c);

void add_new_item(const Item &it);

void clear_all_items();

Money get_cost() const;

};

Customer and Item are helper classes
– do they make the design simpler
and better? What do you think?

class Customer {

private:

std::string name;

std::string billing_address;

std::string shipping_address;

public:

Customer(std::string cname,

std::string cbilladdr,

std::string cmailaddr);

void print_mailing_label() const;

};

class Item {

private:

std::string name;

Money cost;

public:

Item(std::string iname, Money icost);

Money get_item_cost() const;

};

slide 28

15

When to violate the noncommunicating
behavior heuristic

• This is a heuristic – not a rule

• Some classes just have a large number of attributes

• but there are no logical classes that can be split off

• Creating many small classes can create performance problems in some
environments

• for example, Java classes that need to be downloaded from the Web

• When a designer decides to use a wrapper class approach, it is common
to define a single class that describes a particular “interface” that
communicates with other subsystems

• this technique is commonly used with various forms of “component
technology”

slide 29

Example: Design of a Door system

• A simple design example – using design heuristics to evaluate two design
alternatives

• In this system, there will be a set of Doors that are being controlled by a Door
controller object. The Doors in this system might be the doors of a subway
train, the doors of a supermarket, or the doors in a secure building.

Design 2:
Door controller
manages everything

Door controller

list of Door *

is_ok_to_open?()

is_ok_to_close?()

Door

door state

open()

close()

get_door_state()

controls
1..*

1

Design 1:
Door controller is
only responsible for
policy

Door controller

list of Door *

list of door states

open_door(int)

close_door(int)

1..*

Door

get_door_number()

do_hardware_open()

do_hardware_close()

1
controls

slide 30

16

Example: Design of a Door system

• In Design 1, the Door class provides the public interface.

• User presses a button on the Door; the Door will ask the Door controller if it is OK to
open; if it is OK the open() function will complete successfully

• The Door controller needs to check the “rules” – can’t open a train door unless the
train is stopped and in a station…

• Can’t open the door of a secure building unless you have the access code or your ID
is in the database

Design 2:
Door controller
manages everything

Door controller

list of Door *

is_ok_to_open?()

is_ok_to_close?()

Door

door state

open()

close()

get_door_state()

controls
1..*

1

Design 1:
Door controller is
only responsible for
policy

Door controller

list of Door *

list of door states

open_door(int)

close_door(int)

1..*

Door

get_door_number()

do_hardware_open()

do_hardware_close()

1
controls

slide 31

In this example, a
sensor object will
invoke Door::open() Then check if

the Door is
allowed to open
right now…

1

2

Example: Design of a Door system

• In Design 2, the Door controller class provides the public interface.

• User sends a command directly to the Door controller; the Door controller checks its
rules internally; if everything is OK, it will tell the Door to execute its
do_hardware_open()

• We can say that the Door controller is “directly controlling” each of the Doors

Design 2:
Door controller
manages everything

Door controller

list of Door *

is_ok_to_open?()

is_ok_to_close?()

Door

door state

open()

close()

get_door_state()

controls
1..*

1

Design 1:
Door controller is
only responsible for
policy

Door controller

list of Door *

list of door states

open_door(int)

close_door(int)

1..*

Door

get_door_number()

do_hardware_open()

do_hardware_close()

1
controls

slide 32

In this example, a sensor object will invoke
Door controller::open_door() – Door
controller checks the rules

1

Door controller
delegates the
low-level
operation to the
Door class

2

17

Example: Design of a Door system

• Question: Which of the two designs do you prefer?

• It’s your opinion – there is no “right” answer

• How would you explain your preference in a design review
meeting?

Design 2:
Door controller
manages everything

Door controller

list of Door *

is_ok_to_open?()

is_ok_to_close?()

Door

door state

open()

close()

get_door_state()

controls
1..*

1

Design 1:
Door controller is
only responsible for
policy

Door controller

list of Door *

list of door states

open_door(int)

close_door(int)

1..*

Door

get_door_number()

do_hardware_open()

do_hardware_close()

1
controls

slide 33

Some possible arguments for each design

• Why is Design 1 better?
• In Design 2, the Door controller is a “god class”
• If we make changes to the Door class interface, Design 1 might be better

• We could have many different models of Door, with different ways for
users to make requests: a button on the Door, a motion detector to
sense the user moving towards the Door, a wireless interface to allow
users to use their cell phones to request opening or closing a Door

• Each variation could be a “subclass” of the Door class – the interaction
with the Door controller is unchanged

• Why is Design 2 better?
• In Design 2, the scenarios for opening and closing a Door are shorter (and

maybe faster)
• If performance or security is a concern, maybe it is OK to have a god

class…
• Some parts of the Door controller functionality might be built directly

in hardware

Design 1 = more flexible;
easier to extend

Design 2 = more secure;
better performance

slide 34

18

Heuristics are a good way to discuss design
alternatives

• We had two possible design alternatives for the Door controller

• In a design review, the participants need to talk about tradeoffs

• When we see that our design has a god class, we might decide to change it
– to keep the design flexible

• On the other hand, if flexibility is less important than performance, we
might choose the god class design – even though it violates one of the
design heuristics

• Design heuristics are not absolute rules: they are guidelines that help
us think about design alternatives

• The heuristics are sometimes violated in designs that are considered good

slide 35

Collaboration between classes

Student

student name

student id number

register for course offering

complete a course offering

get list of courses taken

display a list of enrolled offerings

Student is the class that represents
the information within the system
contains relating to a specific
student.

•How many Student objects will
there be in the system??

The operations in the Student class
will execute some of the scenarios
are triggered by a human user of the
registration system:

• Register for a course offering

•Get information about current
and past courses

In order to execute these scenarios,
a Student object will need to
collaborate with other objects in the
system: Course and Course offering
objects.

•How do we find the right
objects?

Student

Course

Course offering

0..*

1

0..*

0..*0..*

0..*

is currently
registered for

has completed

is an offering for

Add student to
roster in the
course offering

slide 36

19

How to find the object to collaborate with

• Navigation within an object-oriented system

• How do you know which object to send a message to?

1. the object may be a local object (an embedded attribute in the current
object)

2. the object may be a parameter that was passed into the currently running
operation (by name, value, or reference)

3. the object may be found by requesting it from another object (for example,
finding it in a map or within another data structure that the object knows
about)

4. the object may be a global object

5. you might create a new local object to send the message to

6. the object may be pointed to by a local referential attribute

• Each one of these situations may occur in an object oriented design

[Container class]

[Temporary object]

[Association]

[Special navigation object]

slide 37

Six ways to collaborate

• Example of the six ways to “find the collaborating object” (from Arthur
Riel’s book):

Suppose you are a Car object and you want to collaborate with a Gas
station to call the give_gasoline() operation:

1. local embedded object (a mini-gas station attribute
within the current object – such as a “reserve gas tank”)

2. passed as a parameter (someone called the Car’s
get_gasoline() function and passed as an argument the
name and location of a gas station)

3. requesting it from another object (you have the name
of the station, and you look it up in a data structure class
to get an address or pointer)

Pick up the kids,
and buy some gas

at the Exxon
station on First St.

Where is the
closest gas

station?

slide 38

20

Six ways to collaborate

• Example of the six ways to “find the collaborating object” (from Arthur
Riel’s book):

Suppose you are a Car object and you want to collaborate with a Gas
station to call the give_gasoline() operation:

4. global object (only one gas station, and everyone knows
where it is)

5. create a new local object (whenever you need gas, you
build a gas station on the spot, get gasoline from it, and
destroy it when you’re done)

6. a local referential attribute (when the car is built or
sold, it contains a pointer that has been initialized to the
right gas station to go to for gas – the car dealer gives
you a discount card for a specific local gas station)

slide 39

Collaboration examples

• Sending a message to a local object

• a Microwave Oven sets its Timer to 1
minute (and Timer is contained within the
Microwave Oven)

• Asking another object to find the right
object to collaborate with

• an Automated Teller Machine asks the
central bank for a Customer record so it
can verify the id number

• Creating a new local object to collaborate
with

• a User interface object may create a
temporary Dialog box object to display a
warning message

Microwave
Oven

PowerTube

Timer

Door

ATM

Central
bank

Customer
record

1
0..*

0..*

1

User
interface

Dialog box
1 0..1

slide 40

21

Some collaboration heuristics

These heuristics are from Chapter 4 of Arthur Riel’s book:

• H4.1: Minimize the number of classes with which another class
collaborates.

• H4.2: Minimize the number of message sends between a class and its
collaborator.

• H4.3: Minimize the amount of collaboration between a class and its
collaborator, that is, the number of different messages sent.

• H4.4: Minimize the fanout of a class, that is, the product of the number
of messages defined by the class and the messages they send.

Riel makes two observations about this set of heuristics:

• Heuristic H4.1 is the most important of the four: the main factor in the
“complexity” of a class is the number of other classes it needs to use

• It is silly to set absolute limits for each of these metrics: it is better to
exercising good judgment rather than blindly following an absolute rule

slide 41

Controlling complexity

• We use these four heuristics to help make the design simpler…

• These four heuristics might be violated when a designer:

• creates mega-classes with large numbers of unrelated responsibilities

• creates a behavioral god class, which requires other classes to abdicate
their responsibilities to the central class

• breaks up a class too far, so that many of the algorithms require continually
requesting information from another object

• The designer is trying to create a set of cooperating classes, but the set
of services offered by each class may be poorly coordinated with the
other classes in the design.

slide 42

22

Using containment

• One way to simplify the “uses” (“collaborates with”) relationships in a
design is to combine several objects into a single aggregate object:

Network
monitor

System
clock

File system

Network
card

<<uses>>

<<uses>>

<<uses>>

Network
monitor

Workstation<<uses>>

Network
card

System
clock

File system

slide 43

Containment plus some abstraction

• If you create an aggregate object in
your design, you might put all of the
public operations in the contained
classes into the aggregate object

• not a good practice

• we are providing too much detailed
information to other classes – there
is a good chance that we might
create a god class

• A better idea is to do a little bit of
abstraction

• the only public functions in the
Workstation class will be the
information that needs to be fed to
the Network monitor

• This is the Facade pattern (from the
Design Patterns book)

File system

open_file

close_file

copy_file

check_status

System clock

read

set

test

Network card

open

query

reset

Workstation

open_netcard

query_netcard

reset_netcard

open_file_fs

close_file_fs

....

10 member functions –
not a good design:
too many operations;
doesn’t hide anything

File system

open_file

close_file

copy_file

check_status

System clock

read

set

test

Network card

open

query

reset

Workstation

get_netcard_info

init_netcard

check_status_fs

read_clock

net_sync_clock

a better design:
facade class with
higher-level operations

Facade class public interface should “raise the level of
abstraction” – don’t repeat all primitive operationsslide 44

23

Containment plus some abstraction

• A closer look…

File system

open_file

close_file

copy_file

check_status

System clock

read

set

test

Network card

open

query

reset

Workstation

open_netcard

query_netcard

reset_netcard

open_file_fs

close_file_fs

....

10 member functions –
not a good design:
too many operations;
doesn’t hide anything

slide 45

Containment plus some abstraction

• A closer look…

File system

open_file

close_file

copy_file

check_status

System clock

read

set

test

Network card

open

query

reset

Workstation

get_netcard_info

init_netcard

check_status_fs

read_clock

net_sync_clock

a better design:
facade class with higher-
level operations

slide 46

24

Heuristics related to containment

• Here are two more collaboration heuristics:

• H4.5: If a class contains objects of another class, then the containing class
should be sending messages to the contained objects, that is, the
containment relationship should always imply a uses relationship.

• H4.7: Classes should not contain more objects than a developer can fit in
his or her short-term memory. A favorite value for this number is six.

LogMsg

Time Date Port Link CodeDest Text Prio

Workstation

Network
card

System
clock

File system

<<uses>>

LogMsg

Time Date Port Link CodeDest Text Prio

MsgTime MsgLocation MsgReason

H4.5: uses relationship is
implied by containment

H4.7: add a level in the
containment hierarchy

slide 47

Two ways to use inheritance

• To define…. Families of similar
classes with some attributes and
operations in common (often found
in the initial analysis):

• To define…. New classes that are
added to an existing design (by
extending an existing concrete class):

Kitchen Appliance
{abstract}

list of voltages supported

watts consumed

turn off

Microwave

Oven

set time

set power level

start cooking

turn off

Coffee

Maker

turn on brewer

turn on warmer

turn off

Blender

turn on(speed)

turn off

Fax machine

scan document

transmit document

receive document

print document

Fax/copy

machine

make copies

Note that both Fax machine and
Fax/copy machine are “concrete” classes

Note that Kitchen Appliance is “abstract”
(just defines the common characteristics)

slide 48

25

The most important inheritance heuristic

• The first heuristic in Chapter 5 of Arthur Riel’s book:

• H5.1: Inheritance should be used only to model a specialization hierarchy.

• H5.1 is a restatement of the Liskov Substitution Principle

• Liskov Substitution Principle: Whenever you define a subtype, you should
be able to safely substitute an object of the supertype with an object of the
subtype.

• In other words, although derived classes might have “extra” behavior, they
must also implement the full set of base class behaviors.

• This principle is sometime called the “is-a” rule...

• This is a very important heuristic, because it affects other software
designers that may want to add to an existing inheritance hierarchy

• If you violate the “is-a” rule, existing code might be broken by the addition
of new subclasses

Barbara Liskov, computer science professor at MIT,
inventor of the CLU programming language (with

support for “data abstraction” and subtyping)

slide 49

The “is-a” rule
The behavior of a subclass must conform to the superclass interface:

slide 50

List of operations
• Each subclass must implement

every operation that is defined
in the superclass… but it is OK
to add new functions to the
subclass that aren’t supported
by the superclass

Preconditions
• The preconditions for any subclass

operation are only allowed to be “weaker”
• we don’t want to break existing code:

if a function operates on a
SimpleAppStatusReporter, then it
shouldn’t crash when we pass in an
ExtraLoudAppStatusReporter

SimpleAppStatusReporter

showStatusValue
alert

ExtraLoudAppStatusReporter

showStatusValue
alert
setChimeVolume
setSirenVolume

Postconditions
• The postconditions for any subclass

operation are only allowed to be “stronger”
• If Simple ends its “alert” operation with

the device volume at the same level,
then Extra should meet the same
restriction

• So calling “s.alert()” five times shouldn’t
get progressively louder…

26

Smiley face – one way to check a subclass

For each function in the subclass that is a “redefinition”
of the superclass function:

• compare the preconditions for the subclass function
and the superclass function

• wider means “more permissive precondition”

• compare the postconditions

• narrower means “more restrictive postcondition”

slide 51

inputs

outputs

More permissive =
wider

More restrictive =
narrower

Source: Elisa Banniassad, “Making the Liskov Substitution Principle Happy and Sad,”
https://2017.splashcon.org/event/splash-2017-splash-e-making-the-liskov-
substitution-principle-happy-and-sad

Smiley face – one way to check a subclass
Let’s do an example – can we substitute a
SkateboardDeliveryPerson for a DeliveryPerson?

slide 52

DeliveryPerson

reportLocation
assignDeliveryTask(dest,pkg)

SkateboardDeliveryPerson

reportLocation
assignDeliveryTask(dest,pkg)

For a Skateboard delivery, the
reportLocation preconditions and
postconditions are unchanged

reportLocation

assignDeliveryTask For a Skateboard delivery,
assignDeliveryTask precondition is
narrower:
• 5 pound weight limit for package
• Address must be within 3 miles

OK = wider preconditions,
narrower postconditions

Not OK = narrower
preconditions, wider
postconditions

OK = preconditions and
postconditions are
unchanged

??

Well… maybe this isn’t
a good subclass!

https://2017.splashcon.org/event/splash-2017-splash-e-making-the-liskov-substitution-principle-happy-and-sad

27

Violations of the is-a rule

• The most common violation of H5.1 is the use of inheritance to model a
“has-a” relationship instead of an “is-a” relationship

public class Customer {

private String cust_name;
....

}

public class CustomerOrder extends Customer {

// this permits the Customer.getname() operation
// to be invoked on a CustomerOrder object
// --- this is *not* a good design!! ---
....

}

Java example:

Notice that you won’t get a compiler error
for the CustomerOrder class. It is a
“design-level” problem.

slide 53

Complexity and inheritance depth

• Some thoughts on inheritance depth:

• H5.4: In theory, inheritance hierarchies should be deep – the deeper the
better.

• H5.5: In practice, inheritance hierarchies should be no deeper than an
average person can keep in his or her short-term memory. A popular value
for this depth is six.

• This isn’t an absolute rule: the warning flags should go up at six…

Arthur Riel’s explanation for Heuristic 5.5 (page 84):

“Developers get lost in the levels if the hierarchy is too deep.
This problem can be partly alleviated with support from tools
(tools that let you see the entire public interface from a class,
including inherited operations).”

The problem with deeply-nested class hierarchies:

• there can be a big semantic difference between objects at different
levels of the tree

• subclasses may have special internal states and complicated rules

slide 54

28

Inheritance pitfalls

• One inheritance pitfall – defining several derived classes that are
actually “states” of the main class:

Stack
stack_pointer

push

EmptyStack NonEmptyStack

pop

 A Stack object gets created as a
EmptyStack (so you can’t pop it),
but it becomes a NonEmptyStack
after the first element is added – this
is not a good design!

 The problem is: in most cases, an
object should never change its class.

slide 55

Stack stack1 = new EmptyStack;

(empty)

stack1.push(100);
stack1.push(200);
stack1.push(300);

300
200
100

How did stack1 turn into
a NonEmptyStack?;

Correct way to model a stateful class

• The Stack class hierarchy can be collapsed into a single class by including
a state model:

Stack
stack_pointer

cur_state

push

pop

get_state

non-emptyempty

push

stack_pointer == top

push

pop

class model state model

 The state model can
show which operations
are legal and which are
illegal at various points
in the object’s lifecycle

/* one possible implementation of the pop() operation */

int Stack::pop() {

int val = -1;

if (cur_state == empty) {

// do nothing, set an error code, or throw an exception

}

else { stack_pointer--; val = *stack_pointer; }

if (stack_pointer == top) { cur_state = empty; }

return (val);

}

slide 56

29

Another inheritance pitfall

• Defining derived classes that have only one instance:

CarManufacturer

accounting_method()

Ford

accounting_method()

Toyota

accounting_method()

General Motors

accounting_method()

 each class can only have one instance, so each class is
not very reusable… it would be better to make the
base class accounting_method() operation collaborate
with an AccountingMethod class hierarchy

slide 57

Another inheritance pitfall

• The Accounting method behavior may be factored into a separate class,
so you don’t need subclasses of CarManufacturer:

CarManufacturer

accounting_method()

Accounting method

accounting_method()

ToyotaAccounting

accounting_method()

FordAccounting

accounting_method()

GMAccounting

accounting_method()

current_

accounting_method

10..*

slide 58

30

Watch for singleton objects

• Classes that are really singleton objects are usually not what we want in
a simple and extensible design:

Student

register(Course)

GradStudent

register(Course)

OK

Student

register(Course)

BillGates

register(Course)

Not OK

Student

register(Course)

SpecialDonor

register(Course)

Probably OK

slide 59

Watch for singleton objects

• Classes that are really singleton objects are usually not what we want in
a simple and extensible design:

Course

get_offerings()

SelfPacedCourse

get_offerings()

OK

Course

get_offerings()

DesignHeuristicsIntroCourse

get_offerings()

Not OK

slide 60

31

Heuristics for avoiding inheritance pitfalls

• Arthur Riel has turned these two problems into heuristics:

• H5.14: Do not model the dynamic semantics of a class through the use of
the inheritance relationship. An attempt to model dynamic semantics with
a static semantic relationship will lead to a toggling of types at runtime.

• H5.15: Do not turn objects of a class into derived classes of the class. Be
very suspicious of any derived class for which there is only one instance.

• Note: these two heuristics are sometimes violated for good design
reasons…

– H5.15 is sometimes
violated when you need a
singleton object in a
framework

– H5.14 may be violated in the “virtual
constructor” idiom:
• a “factory method” creates new objects
• if the factory method is creating objects

that have been stored in a file, it might
create an object with an initial interim
datatype and then transform the object
to the correct datatype when all of the
data section is complete

slide 61

Avoid defining derived classes with NOP
operations

• If a subclass satisfies the “is-a” relationship, it
must provide meaningful functionality for each
operation in the superclass

• either the subclass inherits the implementation
of an operation in the superclass

• or the subclass provides a new definition of the
operation that is defined in the superclass

• but the subclass should not redefine the
superclass as a “null operation”

• This is yet another inheritance heuristic:

• H5.17: It should be illegal for a derived class to
override a base class method with a NOP
method, i.e. a method which does nothing.

Dog
tail

bark

wag_tail

DogNoWag

wag_tail

null_operation

poor design:

• canceling an
operation in the base
class

• we don’t “deliver the
complete functionality
of the base class”

slide 62

32

One solution: design a class with optional parts

• A possible solution to the “NOP” problem is to model objects that have
optional parts

• this kind of model uses containment in addition to inheritance

• the model can associate some special behavior with the optional parts, but
the main behavior can be in the main class

Dog
head : Head

legs : Leg[4]

tail : NoTail *

wag_tail

NoTail

wag_tail

Tail

wag_tail

null_operation

a real operation

WebDownload
info : Text

loc : URL

secur : NoSecur *

transmit

NoSecur

encrypt

Security

encrypt

null_operation

a real operation

slide 63

Summary

• What have we learned? How are we going to change the way we design
and implement our software?

• C++ and Java programming guidelines are OK, but they are not enough to
assure software quality

• it is easy to write superficially object oriented software

• but we need to apply some of the design heuristics

• The main pitfalls to watch for are:

• god classes: classes that steal all of the decision-making ability of the
classes around them

• combining several classes into one: look for non-communicating behavior
and find opportunities to make more cohesive classes

• complex collaborations: breaking up the responsibilities too far can create
a maintenance headache

• improper inheritance: violations of the “is-a” rule

slide 64

33

Improving your designs

• This course has presented a number of object oriented design
heuristics: they are simple ideas that can help you make design
decisions

• use them during the process of creating new designs (when you are
originally designing the classes for your system)

• use them during design reviews (when you are discussing your designs with
the rest of your team)

• These design heuristics are not hard-and-fast rules

• these heuristics are occasionally violated in good designs

• some of the heuristics are contradictory

• The design heuristics are one more tool in your design toolkit

slide 65

References

The book:

• Object Oriented Design Heuristics by Arthur Riel (Addison-Wesley, 1996)

Top 20 heuristics:

• http://manclswx.com/talks/top_heuristics.html

Vince Huston – listing of Arthur Riel’s heuristics:

• http://www.vincehuston.org/ood/oo_design_heuristics.html

Design Principles (Bob Martin)

• http://mil-oss.org/resources/objectmentor_design-principles-and-design-
patterns.pdf

• (also at http://manclswx.com/talks/Principles_and_Patterns.pdf)

• (originally at the old ObjectMentor site – now deleted –
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf)

slide 66
Last modified: November 29, 2017

