
03/17/00 1 2:07 PM

Understanding and Addressing
the Essential Costs of Evolving Systems

Joseph Davison, Dennis Mancl, and William F. Opdyke
{jwdavison, mancl, opdyke}@lucent.com

Abstract

A major attribute of telecommunications software systems is change. For evolving telecom systems,
significant expertise is needed to handle effectively and capitalize upon these changes. This paper
discusses some of the key dimensions of change that occur during telecom systems software development,
the areas of expertise that software developers apply in managing these changes, and some of the means
by which high performing project members have overcome the learning curves associated with these
systems. We base our results on data gathered from several Bell Labs multi-year development projects
and from interviews with experienced staff.

Introduction
One of the biggest challenges facing telecom software developers is the fact that any truly
useful software system will inevitably evolve.

For evolving telecom systems, significant expertise is needed to handle effectively and
capitalize upon these changes. Such expertise does not come cheaply; learning curves are
significant for evolving telecom systems. New employees are often surprised by how
much there is to learn. Even employees with 10 or more years of telecom experience
often find that they have a tremendous amount to learn when they move onto a new
project or even into a new area of their current project.

This paper discusses some of the key dimensions of change that occur during telecom
systems software development, the areas of expertise that software developers apply in
managing these changes, and some of the means by which high performing project
members have overcome the learning curves associated with these systems. We base our
results on data gathered from several Bell Labs multi-year development projects and from
interviews with experienced staff.

It is more difficult to design for change than to design for modularity, testability,
portability, performance, or ease of use. “Evolution” or “change” is a difficult thing to
predict, yet it is an essential characteristic of most major software development today.
(While there is, of course, software that does not need to evolve, little of it is of long-term
commercial interest!) While much of the software design effort in a rapidly changing
product is reactive rather than proactive, steps can be taken to anticipate design changes
and introduce design flexibility in the right places if we understand the basic mechanisms
behind the evolution of software systems.

03/17/00 2 2:07 PM

Change and Co-Evolution

Co-evolution
Change, particularly in today’s telecommunications industry, is inevitable.

Consider the following example:

Expensive
Computers

Timesharing

Modems

Remote
Access

Programmable
Switches

Direct dialing

Cost Reductions

Increased
Phone
Usage

Busy Signals

Call Waiting

Disconnects
Disable

Call Waiting
Feature

Figure 1: Communications & Computing Technologies (and User Needs) Co-Evolve

Figure 1 illustrates how telephone capabilities and user needs co-evolved through several
decades of advances in computing and telephony. A product incorporates new
capabilities. These new capabilities, in turn often change how customers do their business,
which in turn leads to new product requirements. Rapid advances in technology
accelerate this process, sometimes allowing radical new capabilities to be incorporated,
sometimes inspiring customers to attempt radical changes in how they do business.

In this example of co-evolution, the development of programmable switches led to cost
reductions which, coupled with the introduction of direct dialing, led to increased usage of
the telephone. As phone usage increased, it became more likely that the person being
called was busy. Seeing an opportunity to increase revenues, the “Call Waiting” feature
was introduced. This feature interrupted the call briefly to insert a special circuit that
could apply a tone informing the customer of a second call and allow them to switch
between the two callers. Meanwhile, the introduction of computer timesharing and the
development of modems led to the use of the telephone for remote access to computers.
Unfortunately, if a customer with Call Waiting was using her modem when a call came in,
the brief interruption caused the modem to disconnect. This led to the development of the
“Disable Call Waiting” feature, whereby the customer could dial a code before placing a
data call to prevent the Call Waiting feature from acting.

03/17/00 3 2:07 PM

Similar examples of co-evolution in technologies and user needs are seen in word
processing and electronic mail. Roles like manager, secretary, and typist have all changed
as PCs and word processing software have been broadly introduced. Many people with
technical/ professional job titles find themselves regularly performing their own word
processing tasks as a secondary part of their jobs. Since word processing work is not their
everyday job, they need software tools that are more “user friendly” . As a result, more
features have been introduced into word processing packages to support novice users.
Similarly, as technology supporting electronic mail has become pervasive in organizations,
the quantity and complexity of email messages have led to the need for email browsers
that can rapidly sort and delete email messages, and handle a multiplicity of attachments.

Dimensions of Change
Such examples illustrate four key dimensions of change:

• User needs and expectations. Requirements aren’ t static. Even if the initial
requirements are “on target” , the product will enable customers to do some things
more easily or more powerfully than before. This will change both their behavior
and their expectations from future products

• Market / competitive forces. Some changes are dictated by changes in the
competitive environment; telecom examples include the rise in digital switching
during the 1980s, the advent of packet-based telephony in the 1990s, and the
recent changes in the pricing of long distance telephone calls in the US (from a
distance-sensitive model to a flat rate per minute model).

• Interfaces (internal and external). Each software system collaborates with other
systems; interfaces with those external systems often change. External interfaces
may be based on industry standards (from the International Telecommunications
Union (ITU) and other sources), but these standards are often evolving in response
to technology changes. Internal interfaces can also change: software systems are
often built using existing commercial components such as databases and
communication protocol stacks; these components may need to be upgraded to
provide better performance or more features. Design changes can result from
these internal interface changes.

• Designers and developers’ understanding of the application domain. As
designers and developers grow in their experience, they better understand the key
design abstractions and can envision better ways to make their product work.

The useful lifetime of a telecom product sometimes spans decades. For example, the
development of several of the electronic switching systems in the field today (some of
which are still under active development) started 30 or more years ago. There are many
factors that influence these lifetimes: for example, the difference between the cost of
evolving a product to meet new market needs and the cost of building a new product
“from scratch” with comparable functionality. During the lifetimes of these systems,
significant changes occur in the functionality of these systems and in the technologies
used. Such systems may truly be called “Evolving Systems”.

03/17/00 4 2:07 PM

Traditional Models Fail to Address Essentials of Evolving Systems
The models of the software development process, as taught in traditional software
engineering texts, often ignore the essential aspects of developing and evolving telecom
systems. The “traditional” (waterfall) software development process is composed of a
series of stages or phases (Requirements -> Design -> Code -> Test -> Maintenance).
While the focus of most computer science and software development training is on the
first three phases, most of our product development costs are incurred in the final,
“maintenance” phase. Calling that phase “maintenance” is really a misnomer. To use a
home building metaphor, most of the software “construction” that we perform is
remodeling or extending an existing structure, rather than performing repairs.
People are more apt to remodel or extend software than make such changes to buildings,
because of software’s apparent flexibility, apparent extensibility, and ease of replication.

Some models attempt to use a modified waterfall development model, considering each
release as a separate product that can be modeled by the traditional waterfall model, with
the total lifecycle thus being an overlapping sequence of waterfall developments. This
technique has no standard way to account for the dependency of later releases on earlier
releases, and thus fails to account for some of the essential costs of developing evolving
systems.

Boehm’s “Spiral” model1 seems better suited to evolving systems, because it explicitly
depicts the dependencies. In Figure 2, each loop of the spiral represents a new product
cycle – another orbit through the plan, specify, design, implement, and review activities.
Using this model, one can show two different essential aspects of evolving systems (shown
by the two arrows in Figure 2):

1. Following the spiraling arc from one release to another, one can see the need for
“compatibility” between different releases. For example, a later release of a software
product may need to be able to access persistent data created in an earlier version of
the product. Users of word processing software are well aware of the difficulties new
releases of the software can introduce when archived documents need to be viewed
with newer releases, or new documents need to be viewed with older releases.
Significant effort in telecom systems must be directed to database evolution between
one release and the next – such issues often limit the ability to “skip” releases, such as
moving from version 3 to version 5 (skipping version 4).

2. A second essential aspect is the “radial” dependency of the design of a new release on
the older releases. The new requirements may seem to be minor to the customer, but
the actual impact will depend greatly on the structure of the existing system.
Furthermore, the fact that new employees joining the project will need to become
familiar with the existing system is much more obvious in the spiral model. Anyone
who has been involved in the development of evolving systems is well aware of this
need, but when it is not obvious in the development models, there may be a tendency
to think these issues are accidental.

03/17/00 5 2:07 PM

When a better development model is used, it is easier to maintain awareness of total
lifecycle costs of development when making managerial decisions. For instance, “cleanup”
is an activity difficult to justify using the waterfall variants, because there is no depiction of
the benefits. The benefits are easier to see with the spiral model, because it is obvious that
they are part of the foundation of later releases.

Architectural Strength Lost & Development Costs Increase
Over time, as they evolve, software systems often lose architectural strength due to factors
that some have described as maintenance degradation2 or software entropy. 3 A design
that starts out “clean” often gets compromised as a system evolves. To complicate
matters, while a system evolves and grows more complex, the organization responsible for
maintaining that system also evolves and inevitably loses project members who possess
valuable expertise about this system.

People are more apt to remodel or extend software than make such changes to buildings,
because of software’s apparent flexibility, apparent extensibility, and ease of replication.
Increased complexity, combined with loss of expertise, can lead to escalating development
costs. What can an organization do?

Figure 2. Spira l model of deve lopment

Desig n
Dependency

com patibi l i ty

Plan

Specify

Design

Implement

Review

03/17/00 6 2:07 PM

The Challenges in Developing Evolving Systems

Discovery Costs
Imagine, for a moment, that you have just been assigned as project manager for a
development that is critical to the success of your business.

1. The project must be completed within 15 months.
2. Both you and your boss are given, from a trusted source, an estimate of 100 technical

head-count years (THCY) for building a solution from scratch.
3. Your boss wants you to build your system by using/ extending a legacy system that

“provides 80% of the required functionality.”
4. Your job is on the line – you will live (or die) by your staffing estimate.

What is your staffing estimate?

• A simple-minded estimate: development using the legacy system ought to only
require 20 THCY – 20% of the cost of building the system from scratch.

• A more informed estimate: the project using the legacy system could require 40
THCY, 50 THCY, or maybe even more than 100 THCY (the cost of building from
scratch).

Why is this the case? While there are many factors, the predominant factor that arose in
our interviews and analysis was what we call discovery costs.

Discovery is the process of learning what you need to know in order to do your job.
Discovery costs are the costs associated with that discovery process. We classify the
kinds of knowledge that are needed to do significant development work on a particular
evolving system:

• Application domain – A developer must learn to understand the application
domain of the product they develop. If the application domain is not widely
known, as was long the case in telephony, it is almost certain that this will be
learned on the job.

• User requirements – The overall requirements for such products may be
considered part of the application domain, but the specific requirements for the
version of the particular product being developed will be incurred each time a
version is developed.

• Relevant design paradigm(s) – The design of evolving systems is a non-trivial
task; people need to be trained to do it. Today many employees arrive with a
working knowledge of software techniques such as object oriented technology, but
may never have been exposed to finite state machines, which are ubiquitous in
telephony. Furthermore, in evolving systems it may be necessary to learn a
paradigm that was used in the original development but is seldom used today.

03/17/00 7 2:07 PM

• Development languages – It is necessary to understand the syntax and semantics
of the languages used for development. This is generally much easier than learning
the appropriate paradigm(s).

• Software development environment – Clearly it is necessary to know how to use
the tools. Tools evolve as well as products; significant advances in tool
capabilities almost certainly requires significant discovery costs in retraining
developers.

• Library of available components. – One of the major areas that requires
significant discovery is learning the library of components available. This includes
not only frameworks and libraries specifically intended for (re-)use but also the
“legacy software” – and that can take considerable effort.

A simple model of these costs can be useful in examining the impact of these costs on
productivity.

We represent an individual’s total effort by f, and the effort they put into discovery as d.
In interviewing people, it’s often easier to get an estimate of D = d/f, the fraction of a
developer’s time spent in discovery. We also represent the “useful” work by w, and
assume that all effort is either discovery or useful work (admittedly an oversimplification).
That is, we assume f = w + d, or w = f – d.

We can then define the efficiency of a developer as the fraction of useful work they are
capable of: E = w/f = (f – d)/f = 1 – d/f = 1 – D.

Our own experience and the results of interviews with other experienced developers
suggests these costs are very significant. Figure 3 plots estimates of an individual’s
efficiency for three telecom software projects at Bell Labs. The data shows an individual’s
efficiency (E = 1 – D), by development cycle for that developer. These projects
collectively spanned nearly two decades. The projects varied in size from 100 developers
to more than 1000 developers. One of the systems used a centralized processor
architecture; two used a distributed architecture. Several different programming
languages were used across these projects.

The estimates in Figure 3 were gathered from dozens of developers, collectively spanning
several projects. These developers estimated their discovery costs by development phase.
Such costs vary from individual to individual, depending largely on their previous
experience. They differ as well by phase of the development cycle and how the project
assigns people – for instance, in systems where developers do their own testing in a
laboratory setting, the costs will often be significantly higher during testing than in coding.
This is so because the development language is generally rather stable, while the lab
changes as the product evolves – thus each release the tester comes to an environment that
differs from what they learned last time.

03/17/00 8 2:07 PM

Exper ience (In development cycles)
0 1 2 or more

Efficiency

.2

.4

.6

.8

1.0

A
B
C

Figure 3: Estimated Efficiency vs. Experience for three development projects

Subsequent discussions with other experienced staff, and estimates derived by other
experienced developers during estimation exercises such as described at the start of this
section, suggest that these results roughly apply across a broader range of product
developments.

Several key insights can be gained:

• For individual developers, discovery costs were seen as the dominant costs for the
first two development cycles. Whenever the majority of developers are
inexperienced, discovery costs may well be the dominant cost of development.

• The efficiency of experienced developers (i.e. those who had worked in the same
area/sub-system of the same product for at least two development cycles) was two
to four times that of staff who were new to that part/ sub-system of the product.
Whereas new project members spent 60-80% of their time doing discovery tasks
and 20-40% of their time doing “useful work” , experienced developers spent
approximately 20% of their time in discovery and 80% doing “useful work” .

• There was a “core” discovery component (approximately 20%) that continued,
even for experienced staff. This is an essential cost of evolution – as long as the
systems continues to change, this cost will continue, disappearing only once the
system becomes stable and stops evolving.

03/17/00 9 2:07 PM

These insights reinforce the intuitions that experienced staff (i.e. those who have worked
through two or more prior releases) can work much more productively than newer staff
on large, legacy system projects, and that learning/ discovery is a part of everyone’s job.
What was surprising (at least to some) was how significant/ time consuming the discovery
process can be for newer employees.

Further analysis of data collected by Davison, Modica, and Baumann showed that, while
discovery costs for an individual vary by experience, they also vary by the phase in the
development process. For experienced staff, discovery costs remain larger for the early
(requirements/ design) and the latter (system testing) phases for the coding phase.
Requirements and Design discovery costs remain high in the early phases because the
system is evolving – at least in large systems it is likely that new requirements will involve
a part of the system that is unfamiliar. Testing discovery costs remain high for developers
largely because of evolution in the labs and test equipment; also, the testing process is
often less standardized and less automated than the development process.

In summary, discovery costs are pervasive – related to evolving systems, customers and
markets, and regarding new/ disruptive technologies and trends.

Problem Understanding
As noted above, requirements and design discovery costs remain relatively high, even for
experienced staff. The only “constant” is change. Unforeseen changes in customer needs
and marketplace preferences will occur, sometimes in ways that do not neatly align with
the current structure of a system.

Problem understanding is hard – and, frankly, for most engineers it is much less satisfying
to understand a problem than to implement a solution. In addition, customers may be hard
to identify or hard to reach, and may be unwilling to describe their needs in terms other
than “I’ ll know it when I see it!”

Not surprisingly, a significant percentage of the areas of concern that arise during
architecture reviews at Bell Labs/ Lucent have related to problem understanding.

Disruptive Technologies and Blindsiders
There is yet another key area of discovery for telecom projects – blindsiders and disruptive
technologies.

Understanding your customers and incrementally evolving your current products might be
sufficient for business success – if your marketplace was stable and technology advances
were modest.

As Bower and Christensen note,4 our dynamic marketplace and rapid technology advances
result in an environment where established companies may find themselves driven out of
markets and perhaps driven out of business by new entrants whose products leverage

03/17/00 10 2:07 PM

disruptive technologies. Rational business planning dictates focusing on the needs of
current customers and high margin products – typically these products are based on
established, “sustaining” technologies. Newer, disruptive technologies are often immature
at first – they have lower margins, but many of these technologies gain maturity very fast.
When disruptive technologies mature to the point that they satisfy customer needs, they
begin a gradual (or not-so-gradual) displacement of the established technologies and
products. Failing to anticipate early and capitalize upon the newer, disruptive
technologies can be disastrous.

The Challenges – How Do We Address Them?

How Do Staff Discover?
When we interviewed experienced architects and developers across several
business units at Bell Labs/ Lucent Technologies,5 these are the ways that they told
us they do discovery:

• Interacting with other staff (colleagues and/or experts)
• Reading code
• Experimenting and debugging in lab or simulator
• Participating in reviews/ Testing
• Taking training courses
• Reading documentation
• Building something (preferably, a simplified example)
• Developing a behavioral simulation.

While all tasks are valuable, their relative use (i.e. the time spent in each area) varied
among technical staff. This variation is likely due both to the product/ sub-system and to
the background and personality of the developer/ architect. For example, extroverts may
spend more time talking with other staff, while introverts spend more time reading.

Assigning experienced technical staff as mentors for new members of a project can be an
effective technique, both for reducing the discovery costs for the new employees, and for
reducing the impact of discovery costs on the broader organization.

Further details on this analysis of discovery costs at Lucent (and elsewhere) are contained
in the panel position statements for an OOPSLA ’97 panel session.5

Tools & Techniques That Aid in Discovery
Which software tools and techniques can aid in avoiding or reducing discovery costs?

There is no single tool that can make all discovery costs disappear. However, lack of
tools can significantly increase discovery costs. This is less of a problem with modern
development environments, but experience has shown that the lack of cross reference
tools, in particular, can significantly increase the cost of development. The inclusion of

03/17/00 11 2:07 PM

good browsers, debuggers, and simulators in modern development environments reflect
their value in reducing discovery costs.

The choice of software technology can also have a significant impact on the resulting
discovery costs. Some technologies that seem to help are:

• Using an existing software framework
• Creating a new software framework based on a generalized view of the current

problem
• Applying some standard design patterns
• Creating a high-level model of a system with use cases

Software frameworks can help to reduce discovery effort. A framework is “a collection of
objects, classes, or subsystems that provides most or all of a needed function and can be
tailored to different situations.” 6 Frameworks have been widely promoted as a good
source of design-level and code-level reuse.

A mature, well-documented framework provides simple mechanisms to redefine some of
the framework’s standard behavior and to extend the framework’s behavior with new
functionality. A developer doesn’t need to be an expert on the internal workings of the
framework – a developer only needs to check that the new extensions fit into the design
rules of the framework. Some frameworks include supplementary tools to help make the
process of extending a framework more automatic, such as the “wizards” in Microsoft
Visual C++ development environment and similar automatic class generation tools in Java
Beans tools.

Mature frameworks can significantly reduce discovery costs and development intervals. 5

A mature, well documented framework makes explicit the domain abstractions,
paradigms, and other design information that staff members need to get “up to speed”, as
well as providing a vocabulary that project members can use to communication with each
other. Object oriented frameworks usually support rapid iteration and prototyping that
facilitates exploration and learning.

On the other hand, overuse or inappropriate uses of software frameworks can actually
increase discovery costs. Some frameworks may have deeply-embedded design features
that cause performance problems in some applications. These problems might require a
lot of knowledge of the internal structure of the framework in order to make an accurate
diagnosis of the problem. Using multiple frameworks in a single application can also
cause integration problems: this happens when different frameworks make incompatible
assumptions about their environment.

The positive and negative effects of the use of tools that rely heavily on frameworks have
been experienced in Lucent software development projects. For example, Corba (the
Common Object Request Broker Architecture) and the use of Corba-based software
environments has been both a help and a hinderance. The use of commercial Corba
packages has simplified the creation of small portable software systems based on a

03/17/00 12 2:07 PM

distributed architecture. On the other hand, Corba has been tricky to use in multi-threaded
environments and in performance-critical applications. Reliance on an evolving
framework adds extra dependencies in the software development process: the success of
some applications has become more dependent on the delivery and update cycles of
external tools and frameworks vendors.

Creating a new framework is a great way to leverage the knowledge of domain experts. A
framework may be a good thing to build for a software organization that plans to develop
a series of applications with similar capabilities. The core capabilities can be “factored”
into a common set of implementations in the framework, and new applications can be built
on top of the common base. Some techniques such as Domain Engineering have been
proven to be useful in the design of frameworks for well-understood problem domains.7

There are some significant pitfalls in the creation of new frameworks. A framework needs
to have good documentation. This documentation should include example programs
illustrating the typical ways to extend the framework plus clear documentation of the rules
and constraints of the framework. A poorly documented framework can cause the
average software developer to have to discover a lot of these rules and constraints without
much help.

Many of the standard design patterns (such as the object oriented design patterns
described in the Design Patterns book8) document good design practices. These design
patterns contribute to lower discovery costs in two ways. First, the patterns are a useful
vocabulary for common design techniques – a designer can explain some of the important
mechanisms in a design document by referring to the names of the patterns that are used in
the design. A newcomer to a project can get a better idea of the design intent of a section
of the design if it is described using pattern vocabulary. Second, some of the design
patterns (such as the Facade, Bridge, and Proxy patterns) are techniques that promote
clean separation between different sections of a design. In these kinds of designs, some of
the internal changes that are required to support new features or to improve system
performance can be achieved using “refactoring” techniques.9

Finally, more software development teams are writing some of their system-level
requirements documentation in terms of use cases, which provides a good end-to-end
view of system operations for developers who are new on a development team.10,11 Use
cases describe the externally-visible behavior of the system under design by documenting
groups of related high-level scenarios. Use cases can be used to give requirements writers
and customers a method of describing the requirements that are most likely to change in a
system, so the system designers can be sure to keep certain parts of the design flexible.

Why do use cases have an impact on discovery costs? One of the biggest problems in
making design changes is “understanding the big picture” . Each design change has a
chance of breaking existing features in addition to adding new features. A developer must
understand more than just the localized structure of the code that is being modified: the
designer has to understand the context of the change. By referring to a high-level use case
model of the system, the developer can quickly grasp which scenarios are likely to be

03/17/00 13 2:07 PM

affected by a specific design change. The use cases act as a simple behavioral roadmap to
a large software system.

Addressing Problem Understanding
Problem understanding is a critical issue – and one which is addressed in Lucent’s
architecture reviews and related training.

Architecture reviews and associated training are an important part of our corporate
culture, and have paid dividends for our product development teams. Hundreds of
architecture reviews have been held in recent years – where project members present the
goals and state of their project to a review team of experts from other business units. The
review team is often able to uncover blind spots that a product team may have missed – in
time to correct them and avoid costly rework downstream.

Training courses focus on developing effective problem statements and formulating a
balanced product architecture that meets form, function, economy, and time requirements
as well as balancing technology, design, and management concerns. Checklists have been
defined to aid in evaluating architectures. Students also learn and apply a range of
creativity techniques especially useful in the up-front stages of product definition.

While these resources are valuable, problem understanding remains a challenging problem.

As our systems evolve, some changes which may look easy to our customers prove to be
difficult to implement. Customers’ views of our products abstract away many of the
complexities of these products, some of which account for much of the development
complexities. Some of the issues that are glossed over in the customers’ views of our
products are resource contention among multiple simultaneous calls/ connections,
handling asynchronous events, error handling, and feature interactions. If we want to
reduce the disconnect between customer expectations and development realities, we need
to foster effective customer engagement and apply relevant expertise (often a team of
experts) to handle the tough problems. Acquiring the relevant expertise comes through
the discovery activities described previously (interacting with other staff, reading code,
experimenting, etc.).

Addressing Disruptive Technologies
There are many examples (documented by Christensen and others) of companies that
failed to recognize and capitalize upon emerging/ disruptive technologies. Fortunately
there are means by which established players in an industry can leverage emerging
technologies, redefine themselves as a business, and achieve significant growth.

Bell Labs has long been committed to both basic research and to nearer term, more
applied research, and has aggressively moved to capitalize on new technologies within our
business units.

03/17/00 14 2:07 PM

One of the ongoing challenges that Lucent and other high technology companies face is
supporting our product development staff in understanding new technologies and trends,
while maintaining the necessary focus on bringing near term products to market. One of
the means by which development staff become familiar with emerging and potentially
disruptive technologies and trends is through an ongoing series of half-day Blindsiders
seminars, held several times each year. These seminars are routinely attended by several
hundred staff at each of several Lucent sites. In addition to the seminars, a wide range of
short courses are offered on emerging topics, and annual forums such as the Lucent
Software Symposium bring together staff from across our business units.

It is very challenging to effectively train our diverse audience, which consists of recent
college graduates, market hires, and staff with considerable “ in house” work experience.
The training must contain a sufficient level of detail in order to achieve credibility with this
audience. But the technical detail in the seminars should be balanced with discussions of
market related and financial topics. Many of our product development staff want “news
they can use” – much of their learning comes from seeing experience reports, interacting
with experts from inside and outside Lucent, and applying newly learned concepts in
student exercises. For example, in one of our recently introduced two-day short courses
on evolving systems, we include a mixture of in-company product team experiences,
current and emerging industry best practices, a discussion of discovery costs issues, and
seven team-based exercises where students take on design, project management, and
analyst roles. A final team exercise brings together students with common business unit
and/or project interests to discuss how to apply what they have learned “on the job” –
including a discussion of challenges and how to overcome them.

Trends in the telecom industry change quickly; members of our seminar planning teams
and curriculum development teams (many of whom have development responsibilities
within our product groups) actively monitor the literature and the competitive landscape.
Effective training is hard work – but we see benefits both for our business units (as they
compete in changing markets) and our individual staff members (as they manage their
careers).

Summary

Much of the complexity in building telecom systems comes from the need to adapt to and
capitalize upon change. Discovery costs are significant for evolving systems. Problem
understanding and disruptive technologies are important areas to understand in planning
and developing telecom products. This paper quantifies the costs of discovery, as well as
describing techniques that assist our telecom development projects in developing the
understanding needed to succeed.

References

03/17/00 15 2:07 PM

1. Barry Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, May 1988, pp. 61-72.

2. Grady Booch, Object-Oriented Analysis and Design, second edition, Benjamin
Cummings, Redwood City, California, 1994, p. 263.

3. Luke Hohmann, Journey of the Software Professional, Prentice-Hall, Upper Saddle
River, New Jersey, 1997, p. 349.

4. J. L. Bower and C. M. Christensen, “Disruptive Technologies: Catching the Wave,”
Harvard Business Review, Jan.-Feb. 1995, pp. 43-53.

5. Steven Fraser, Kent Beck, Grady Booch, Jim Coplien, Ralph Johnson, and Bill
Opdyke, “Beyond the Hype: Do Patterns and Frameworks Reduce Discovery Costs?”
Proceedings of OOPSLA ’97, Atlanta, Georgia, Oct. 5-9, 1997, pp. 342-344.

6. Alistair Cockburn, Surviving Object-Oriented Projects, Addison-Wesley, Reading,
Massachusetts, 1998, p. 9.

7. Robert Lied, Lynn P. Paulter, and Patrick E. Helmers, “Introducing Software Reuse
Technology,” Bell Labs Technical Journal, Winter 1997, pp. 188-199.

8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns,
Addison-Wesley, Reading, Massachusetts, 1995.

9. Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts,
Refactoring: Improving the Design of Existing Code, Addison-Wesley, Reading,
Massachusetts, 1999.

10. Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard, Object-
Oriented Software Engineering: a Use Case Driven Approach, Addison-Wesley,
Reading, Massachusetts, 1992, pp. 442-450.

11. Geri Schneider and Jason P. Winters, Applying Use Cases, Addison-Wesley, Reading,
Massachusetts, 1998, pp. 133-135.

